Adoption of Banana Tissue culture and Nutrient Enhancement Technologies to curb the HIV-Poverty-Malnutrition cycle Among People Living With HIV and AIDS (PLWHAs) in the Lake Victoria Basin

Mwangi, M. N¹; Muyonga, J²; Wamue-Ngare, G³;Nganga, Z. W.⁴ and Manyama, A.⁵

¹Department of Biochemistry and Biotechnology, Kenyatta University,

²University, Department of Food Science & Technology, Makerere University; ³Department of Gender Studies, Kenyatta University y,⁴ Department of Medical Laboratory Sciences, Jomo Kenyatta University of Agriculture and Technology, ⁵Department of Agricultural Economics and Agribusiness, Sokoine University of Agriculture

Background

- Globally 34 million PLWHAS (UNAIDS, 2013).
- Sub-Saharan Africa- the greatest burden
 - 23.5 million (69 percent) of all PLWHAs
 - Aprox 1.6 million new HIV infections ; 1.2 million AIDSrelated deaths
- Eastern Africa is the 2nd most affected 4.6 million PLWHAs
 - Kenya (6.1%), Uganda (7.2%), Tanzania (5.1%)
- Highest prevalence in the Lake Victoria basin (LVB)
- HIV and AIDS Affects the most productive age (15 49 years)
- Global efforts- significant gains especially in accessibility to ARTS

The Vicious cycle of poverty and malnutrition

FIGURE 1 The vicious cycle of poverty and malnutrition

HIV promotes the Vicious, Poverty-Malnutrition-Cycle

- Poverty sets the stage for the spread of the epidemic
- Malnutrition is a cause and a consequence of poverty
- HIV- Directly affects nutritional status (uptake and needs of PLWHAs
- Indirect- socio-economic consequences

Need Practical Holistic Interventions to Break the Cycle

Banana TC technology transfer technology using best practices

Nutrition intervention

- Intercropping bananas with nutrient –
 rich indigenous vegetables .
- Introduce nutrient enhanced banana flour

Food and Nutritional Security, Sustainable production systems, wealth creation

Why Banana

- Important multipurpose crop
 - Food, feed, income, envt conservation
- Possibility for Nutrient enhancement
- All year round crop
- Yield can be increased by up to 30% through the use of TC seedlings coupled/ good crop management practices.

OBJECTIVES

- To disseminate banana tissue culture technology among PLWHAs .
- To determine the effect of nutrient enhanced banana flour on nutrient intake of PLWHAs
- To assess the impact of adoption of Nutrient enhancement and Banana TC technologies on the livelihoods of PLWHAs

STUDY SITES

- LVB highest poverty and HIV prevalence
- High potential for banana production
- Banana is a major staple
- Limited dissemination/ awareness and adoption of TC technology in the LVB.
- Production below potential

STUDY DESIGN

PLWHAs

Methodology-TC

Supply seedlings

- Explain the tissue culture process
 - Organise farmer visits to lab

Experimental evaluation of performance of TC bananas on farmer's fields

Methodology-Nutrient Enhancement

- A banana based nutrient enhanced food supplement composition:
 - banana flour (61%)
 - soybean flour (39%)
 - multi-nutrient fortificant pre-mix (0.2%),
 - 459.7 kcal
 - 15% protein
 - substantial levels of vital vitamins and minerals
- distributed to 15 respondents and their nutrient intake estimated.

Results- Tissue Culture

- Preferred varieties-'Bluggoe' ABB (Ngombe); Ney Poovan AB ('Kasukari' or sweet banana) AB
- Criteria =taste, market value, yield, drought tolerance, availability of planting materials ,shelf life.
- TC technology awareness level 5%
- Over 50% of the respondents reported inadequate harvests.
- Farmers indicated willingness to adopt other banana varieties provided they met these criteria.
- The banana product was well accepted and increased energy and nutrient intake by the recipients.

Field Establishment TC- Day 0

CV Williams

CV Kasukari

Green House- Field- Market

Growth and fruit parameters of 'Kasukari' AB and 'Bluggoe ABB plants during the first production cycle. (conv=Conventional;TC =Tissue culture TLF=Total number of leaves at Flowering; TLH= Total number of leaves at Harvest;L:W= Leaf length to width ratio; DF = Number of days to flowering; DH= Number of days to harvest; NF=Number of fingers in central hand;LF=external length of finger of central hand; GF= Girth of central finger of

central hand. (n=60)

Cultivar	Type of sucker planted	TLF	TLH	Leaf length (cm)	leaf width (cm)	Leaf index L:W)	DF	DH	NF	Bunch weight (Kg)	LF (cm)	GF (cm)
Kasukari	тс	15	7	92	41	2.2	328	423	13	16	15	14
AB	CV	16	6	113	66	1.7	364	576	18	6	10	7
Bluggoe	ТС	13	6	106	61	1.7	354	465	15	40	17	15
ABB	CV	12	6	107	67	1.6	429	490	12	20	17	14

Observations: Earliness, broader leaves, more fingers,x2 bunch weight, larger fruits

Increased Banana Cultivation

Number of different banana cultivars established by group members in their fields

Members	Sweet Banana (Kasukari)	Grand Naine	Nyoro	Giant Cavendish	Total
1	4	4	4	2	14
2	5	3	2		10
3	4	2	2		8
4	2	3	1	1	7
5	2	4	2	2	10
6	6		1	3	10
7	3	3	1	3	10
8	4	2	2	2	12

Yield reduction vs production cycle

Results- Nutrient Intake of PLWHAs in Rakai

Nutrient	Weekend	% of	Weekday	% of	RDA
		RDA		RDA	
Energy (kcal)	1676.2	69.8	1594.7	66.4	2400
Protein (%)	12.1	70%	12.2	66	12-15
Fat (%)	14.1	47	18.1	60.3	30
Vitamin A (mcg)	975.8	195.2	975.3	195.1	500
Vitamin C (mg)	114.1	253.6	139.7	310.4	45
Vitamin E (mg)	8.4	168	7.0	140	5
Vitamin B1 (mg)	0.8	72.7	0.9	81.8	1.1
Vitamin B2 (mg)	0.8	72.7	0.8	72.7	1.1
Vitamin B6 (mg)	2.4	184.6	2.3	176.9	1.3
Folate (mcg)	249.6	62.4	206.0	51.5	400
Calcium (mg)	259.4	25.9	229.7	23	1000
Zinc (mg)	6.7	104.7	6.8	106.3	6.4
Iron (mg)	12.9	64.5	11.9	59.5	20mg

Contribution of Banana to Energy Intake for PLWHA in Rakai District

Percentage of energyfrom matooke	Weekday	Weekend
Kcal (average value)	612.8	610.8
Classification based on amount of energy	% of	% of
from <i>matooke</i>	respondents	respondents
< 10%	10	10
10-30%	26.7	23.3
30-50%	30	36.7
> 50%	33.3	30

Nutritional Enhancement of Banana

Nutrient	Nutrient enhanced banana	Banana flour
Energy (kcal)	459.7	211
Protein %	15.2	2.37
Fat (%)	9.63	0.28
Iron (mg)	12.0	0.7
Vitamin B ₁ (mg)	0.4	0.11
Vitamin B ₂ (mg)	0.6	0.146
Folate (mcg)	120	9
Vitamin A (mcg)	312.4	15.1
Zinc (mg)	2.3	0.27
Selenium	5.3	2.4

Acceptability of Nutrient Enhanced Banana Flour

- Average consumption was found to be 66g per person and the limiting factor was the amounts available
- 73% of respondents indicated that they liked the product very much
- 87% revealed that they were willing to consume the product daily
- All respondents mentioned increase in available food options as a benefit

Contribution of Nutrient Enhanced Banana to Nutrient Intake

Daily intake from nutrient enhanced banana				
Nutrients	Weekday	Weekend	% of	
			RDA supplied by diet	
Energy (kcal)	256.9	257.85	73.2	
Protein (%)	11.59	11.63	73	
Fat (%)	6.48	6.5	93.1	
Vitamin A (mcg)	2101.16	2108.97	>100	
Vitamin E (mg)	0.16	0.16	>100	
Vitamin B_1 (mg)	0.27	0.27	74.5	
Vitamin B ₂ (mg)	0.4	0.41	99.1	
Folate (mcg)	80.7	81	69.5	
Zinc (mg)	1.55	1.55	>100	
Iron (mg)	2.36	2.36	64.5	

Intercropping with Indigenous Vegetables

Healthier, Happier, Families

Community Outreach

demonstration farm learning resource

Training of farmers and in-Service Teachers

Other Positive Outcomes

Capacity Building

- Improved farming and crop management practices
- Recipes for better nutrition
- Gender awareness

Highlights/ Conclusions

- Nutrient enhanced banana increased energy, iron, folic acid, vitamins B1 and B2 but levels remained below RDA;
- To obtain RDA levels of these critical nutrients, PLWHA would have to increase consumption of nutrient enhanced banana to 204g.
- establishment of both TC and non-TC orchards should be accompanied by training on good crop management practices
- involvement of farmers in the whole research process encouraged faster adoption of the technologies.
- The project had other positive outcomes and attracted interest beyond the PLWHA groups.

Way Forward

- Establishment of on-farm nurseries managed by the groups
- Green house and field tests
- Monitor adoption and Benefits of the 2 technologies with respect to food /nutritional security and income.
- Acceptability studies in the larger community
- Widespread dissemination of TC in collaboration with KARI
- Demonstrating and publicizing processing of banana to minimise postharvest losses
- Explore PPP for large scale production of banana flour/products

Acknowledgements

- Respondents
- Research Team
- Donor- VICRES-ICUEA/SIDA

- UNESCO ANSTI, Kenyatta University- Travel Grant
- Collaborating Universities

